Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

and(true, X) → activate(X)
and(false, Y) → false
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
add(0, X) → activate(X)
add(s(X), Y) → s(n__add(activate(X), activate(Y)))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(activate(Y), n__first(activate(X), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
add(X1, X2) → n__add(X1, X2)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__add(X1, X2)) → add(activate(X1), X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(X)
activate(n__s(X)) → s(X)
activate(X) → X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

and(true, X) → activate(X)
and(false, Y) → false
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
add(0, X) → activate(X)
add(s(X), Y) → s(n__add(activate(X), activate(Y)))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(activate(Y), n__first(activate(X), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
add(X1, X2) → n__add(X1, X2)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__add(X1, X2)) → add(activate(X1), X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(X)
activate(n__s(X)) → s(X)
activate(X) → X

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ADD(s(X), Y) → S(n__add(activate(X), activate(Y)))
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
ACTIVATE(n__s(X)) → S(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
IF(true, X, Y) → ACTIVATE(X)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
IF(false, X, Y) → ACTIVATE(Y)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), X2)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Y)
AND(true, X) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ADD(s(X), Y) → ACTIVATE(Y)
ACTIVATE(n__from(X)) → FROM(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ADD(0, X) → ACTIVATE(X)
ADD(s(X), Y) → ACTIVATE(X)

The TRS R consists of the following rules:

and(true, X) → activate(X)
and(false, Y) → false
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
add(0, X) → activate(X)
add(s(X), Y) → s(n__add(activate(X), activate(Y)))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(activate(Y), n__first(activate(X), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
add(X1, X2) → n__add(X1, X2)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__add(X1, X2)) → add(activate(X1), X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(X)
activate(n__s(X)) → s(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ADD(s(X), Y) → S(n__add(activate(X), activate(Y)))
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
ACTIVATE(n__s(X)) → S(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
IF(true, X, Y) → ACTIVATE(X)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
IF(false, X, Y) → ACTIVATE(Y)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), X2)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Y)
AND(true, X) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ADD(s(X), Y) → ACTIVATE(Y)
ACTIVATE(n__from(X)) → FROM(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ADD(0, X) → ACTIVATE(X)
ADD(s(X), Y) → ACTIVATE(X)

The TRS R consists of the following rules:

and(true, X) → activate(X)
and(false, Y) → false
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
add(0, X) → activate(X)
add(s(X), Y) → s(n__add(activate(X), activate(Y)))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(activate(Y), n__first(activate(X), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
add(X1, X2) → n__add(X1, X2)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__add(X1, X2)) → add(activate(X1), X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(X)
activate(n__s(X)) → s(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 5 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP
          ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), X2)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Y)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ADD(s(X), Y) → ACTIVATE(Y)
ACTIVATE(n__from(X)) → FROM(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ADD(0, X) → ACTIVATE(X)
ADD(s(X), Y) → ACTIVATE(X)

The TRS R consists of the following rules:

and(true, X) → activate(X)
and(false, Y) → false
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
add(0, X) → activate(X)
add(s(X), Y) → s(n__add(activate(X), activate(Y)))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(activate(Y), n__first(activate(X), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
add(X1, X2) → n__add(X1, X2)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__add(X1, X2)) → add(activate(X1), X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(X)
activate(n__s(X)) → s(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ADD(s(X), Y) → ACTIVATE(Y)
ADD(0, X) → ACTIVATE(X)
ADD(s(X), Y) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.

ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), X2)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Y)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__from(X)) → FROM(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
Used ordering: Polynomial interpretation with max and min functions [25]:

POL(0) = 0   
POL(ACTIVATE(x1)) = x1   
POL(ADD(x1, x2)) = 1 + x1 + x2   
POL(FIRST(x1, x2)) = x1 + x2   
POL(FROM(x1)) = x1   
POL(activate(x1)) = x1   
POL(add(x1, x2)) = 1 + x1 + x2   
POL(cons(x1, x2)) = max(x1, x2)   
POL(first(x1, x2)) = x1 + x2   
POL(from(x1)) = x1   
POL(n__add(x1, x2)) = 1 + x1 + x2   
POL(n__first(x1, x2)) = x1 + x2   
POL(n__from(x1)) = x1   
POL(n__s(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = x1   

The following usable rules [17] were oriented:

activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(X)
activate(n__s(X)) → s(X)
activate(X) → X
add(s(X), Y) → s(n__add(activate(X), activate(Y)))
add(X1, X2) → n__add(X1, X2)
from(X) → cons(activate(X), n__from(n__s(activate(X))))
first(s(X), cons(Y, Z)) → cons(activate(Y), n__first(activate(X), activate(Z)))
first(0, X) → nil
activate(n__add(X1, X2)) → add(activate(X1), X2)
add(0, X) → activate(X)
s(X) → n__s(X)
from(X) → n__from(X)
first(X1, X2) → n__first(X1, X2)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), X2)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Y)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
ACTIVATE(n__from(X)) → FROM(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)

The TRS R consists of the following rules:

and(true, X) → activate(X)
and(false, Y) → false
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
add(0, X) → activate(X)
add(s(X), Y) → s(n__add(activate(X), activate(Y)))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(activate(Y), n__first(activate(X), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
add(X1, X2) → n__add(X1, X2)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__add(X1, X2)) → add(activate(X1), X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(X)
activate(n__s(X)) → s(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
QDP
                  ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

FIRST(s(X), cons(Y, Z)) → ACTIVATE(Y)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
ACTIVATE(n__from(X)) → FROM(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
FROM(X) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)

The TRS R consists of the following rules:

and(true, X) → activate(X)
and(false, Y) → false
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
add(0, X) → activate(X)
add(s(X), Y) → s(n__add(activate(X), activate(Y)))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(activate(Y), n__first(activate(X), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
add(X1, X2) → n__add(X1, X2)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__add(X1, X2)) → add(activate(X1), X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(X)
activate(n__s(X)) → s(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


FROM(X) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.

FIRST(s(X), cons(Y, Z)) → ACTIVATE(Y)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
ACTIVATE(n__from(X)) → FROM(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
Used ordering: Polynomial interpretation with max and min functions [25]:

POL(0) = 1   
POL(ACTIVATE(x1)) = x1   
POL(FIRST(x1, x2)) = x1 + x2   
POL(FROM(x1)) = 1 + x1   
POL(activate(x1)) = x1   
POL(add(x1, x2)) = x2   
POL(cons(x1, x2)) = max(x1, x2)   
POL(first(x1, x2)) = x1 + x2   
POL(from(x1)) = 1 + x1   
POL(n__add(x1, x2)) = x2   
POL(n__first(x1, x2)) = x1 + x2   
POL(n__from(x1)) = 1 + x1   
POL(n__s(x1)) = x1   
POL(nil) = 0   
POL(s(x1)) = x1   

The following usable rules [17] were oriented:

activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(X)
activate(n__s(X)) → s(X)
activate(X) → X
add(s(X), Y) → s(n__add(activate(X), activate(Y)))
add(X1, X2) → n__add(X1, X2)
from(X) → cons(activate(X), n__from(n__s(activate(X))))
first(s(X), cons(Y, Z)) → cons(activate(Y), n__first(activate(X), activate(Z)))
first(0, X) → nil
activate(n__add(X1, X2)) → add(activate(X1), X2)
add(0, X) → activate(X)
s(X) → n__s(X)
from(X) → n__from(X)
first(X1, X2) → n__first(X1, X2)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ QDPOrderProof
QDP
                      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

FIRST(s(X), cons(Y, Z)) → ACTIVATE(Y)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__from(X)) → FROM(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)

The TRS R consists of the following rules:

and(true, X) → activate(X)
and(false, Y) → false
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
add(0, X) → activate(X)
add(s(X), Y) → s(n__add(activate(X), activate(Y)))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(activate(Y), n__first(activate(X), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
add(X1, X2) → n__add(X1, X2)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__add(X1, X2)) → add(activate(X1), X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(X)
activate(n__s(X)) → s(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ QDPOrderProof
                    ↳ QDP
                      ↳ DependencyGraphProof
QDP
                          ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

FIRST(s(X), cons(Y, Z)) → ACTIVATE(Y)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)

The TRS R consists of the following rules:

and(true, X) → activate(X)
and(false, Y) → false
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
add(0, X) → activate(X)
add(s(X), Y) → s(n__add(activate(X), activate(Y)))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(activate(Y), n__first(activate(X), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
add(X1, X2) → n__add(X1, X2)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__add(X1, X2)) → add(activate(X1), X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(X)
activate(n__s(X)) → s(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
The remaining pairs can at least be oriented weakly.

FIRST(s(X), cons(Y, Z)) → ACTIVATE(Y)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
Used ordering: Polynomial interpretation with max and min functions [25]:

POL(0) = 0   
POL(ACTIVATE(x1)) = x1   
POL(FIRST(x1, x2)) = x1 + x2   
POL(activate(x1)) = x1   
POL(add(x1, x2)) = x1 + x2   
POL(cons(x1, x2)) = max(x1, x2)   
POL(first(x1, x2)) = 1 + x1 + x2   
POL(from(x1)) = x1   
POL(n__add(x1, x2)) = x1 + x2   
POL(n__first(x1, x2)) = 1 + x1 + x2   
POL(n__from(x1)) = x1   
POL(n__s(x1)) = x1   
POL(nil) = 1   
POL(s(x1)) = x1   

The following usable rules [17] were oriented:

activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(X)
activate(n__s(X)) → s(X)
activate(X) → X
add(s(X), Y) → s(n__add(activate(X), activate(Y)))
add(X1, X2) → n__add(X1, X2)
from(X) → cons(activate(X), n__from(n__s(activate(X))))
first(s(X), cons(Y, Z)) → cons(activate(Y), n__first(activate(X), activate(Z)))
first(0, X) → nil
activate(n__add(X1, X2)) → add(activate(X1), X2)
add(0, X) → activate(X)
s(X) → n__s(X)
from(X) → n__from(X)
first(X1, X2) → n__first(X1, X2)



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ QDP
                  ↳ QDPOrderProof
                    ↳ QDP
                      ↳ DependencyGraphProof
                        ↳ QDP
                          ↳ QDPOrderProof
QDP
                              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

FIRST(s(X), cons(Y, Z)) → ACTIVATE(Y)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(X)
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)

The TRS R consists of the following rules:

and(true, X) → activate(X)
and(false, Y) → false
if(true, X, Y) → activate(X)
if(false, X, Y) → activate(Y)
add(0, X) → activate(X)
add(s(X), Y) → s(n__add(activate(X), activate(Y)))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(activate(Y), n__first(activate(X), activate(Z)))
from(X) → cons(activate(X), n__from(n__s(activate(X))))
add(X1, X2) → n__add(X1, X2)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__add(X1, X2)) → add(activate(X1), X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(X)
activate(n__s(X)) → s(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 3 less nodes.